

DEPARTMENT OF COMPUTER SCIENCE

ENGINEERING-DS

SOFTWARE TESTING

METHODOLOGIES

LAB MANUAL

Subject Code : CS625PE

Regulation : R18/JNTUH Academic Year : 2023-24

III B. TECH II SEMESTER

COMPUTER SCIENCE AND ENGINEERING

Pallavi Engineering college

Affiliated to JNTUH, Kuntloor(V),Abdullapurmet(M) R. R Dist, TS-

501505

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

VISION AND MISSION OF THE INSTITUTION

VISION

To become self-sustainable institution this is recognized for its new age engineering

through innovative teaching and learning culture, inculcating research and

entrepreneurial ecosystem, and sustainable social impact in the community.

MISSION

 To offer undergraduate and post-graduate programs that is supported through

industry relevant curriculum and innovative teaching and learning processes that

would help students succeed in their professional careers.

 To provide necessary support structures for students, this will contribute to their

personal and professional growth and enable them to become leaders in their

respective fields.

 To provide faculty and students with an ecosystem that fosters research and

development through strategic partnerships with government organisations and

collaboration with industries.

 To contribute to the development of the region by using our technological expertise

to work with nearby communities and support them in their social and economic

growth.

VISION AND MISSION OF CSE DEPARTMENT

VISION

To be recognized as a department of excellence by stimulating a learning

environment in which students and faculty will thrive and grow to achieve their

professional, institutional and societal goals.

 MISSION

 To provide high quality technical education to students that will enable life-

long learning and build expertise in advanced technologies in Computer

Science and Engineering.

 To promote research and development by providing opportunities to solve

complex engineering problems in collaboration with industry and

government agencies.

 To encourage professional development of students that will

inculcate ethical values and leadership skills while working with the

community to address societal issues.

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

PROGRAM EDUCATIONAL OBJECTIVES (PEOS):

A graduate of the Computer Science and Engineering Program should:

PEO1

Program Educational Objective1: (PEO1)

The Graduates will provide solutions to difficult and challenging issues in

their profession by applying computer science and engineering theory and

principles.

PEO2

Program Educational Objective2 :(PEO2)

The Graduates have successful careers in computer science and engineering

fields or will be able to successfully pursue advanced degrees.

PEO3

Program Educational Objective3: (PEO3)

The Graduates will communicate effectively, work collaboratively and

exhibit high levels of Professionalism, moral and ethical responsibility.

PEO4

Program Educational Objective4 :(PEO4)

The Graduates will develop the ability to understand and analyse

Engineering issues in a broader perspective with ethical responsibility

towards sustainable development.

PROGRAM OUTCOMES (POS):

PO

1

Engineeringknowledge:Applytheknowledgeofmathematics,science,engineer

ing Fundamentals

andanengineeringspecializationtothesolutionofcomplexengineeringproblems.

PO

2

Problem analysis: Identify, formulate, review research literature, and

analyze complex engineering problems reaching

 substantiated conclusions using first

 principles of

mathematics, natural sciences, and engineering sciences.

PO

3

Design/development of solutions: Design solutions for complex engineering

problems and design system components or processes that meet the specified

needs with appropriate

consideration for the public health and safety, and the cultural, societal,

and environmental considerations.

PO

4

Conduct investigations of complex problems: Use research-based

knowledge and research methods including design of experiments, analysis

and interpretation of data, and synthesis of the information to provide valid

conclusions.

PO5
Modern tool usage: Create, select, and apply appropriate techniques,

resources, and modern engineering and IT tools including prediction and

modeling to complex engineering activities

with an understanding of the limitations.

PO6
The engineer and society: Apply reasoning informed by the contextual

knowledge to assess societal, health, safety, legal and cultural issues and the

consequent responsibilities relevant to

the professional engineering practice.

PO7
Environment and sustainability: Understand the impact of the

professional engineering Solutions in societal and environmental contexts,

and demonstrate the knowledge of, and need for sustainable development.

PO8
Ethics: Apply ethical principles and commit to professional ethics and

responsibilities and norms of the engineering practice.

PO9
Individual and team work: Function effectively as an individual, and as a

member or leader In diverse teams, and in multi-disciplinary settings.

PO10

Communication: Communicate effectively on complex engineering

activities with the engineering community and with society at large, such as,

being able to comprehend and write effective reports and design

documentation, make effective presentations, and give and receive

clear instructions.

PO11
Project management and finance: Demonstrate knowledge and

understanding of the Engineering and management principles and apply

these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

PO12
Life-long learning: Recognize the need for, and have the preparation and

ability to engage in independent and life-long learning in the broadest

context of technological change.

PROGRAM SPECIFIC OUTCOMES(PSOS):

PSO1
Problem Solving Skills – Graduate will be able to apply computational

techniques and software principles to solve complex engineering problems

pertaining to software engineering.

PSO2
Professional Skills – Graduate will be able to think critically, communicate

effectively, and

collaborate in teams through participation in co and extra-curricular

activities.

PSO3
Successful Career – Graduates will possess a solid foundation in computer

science and engineering that will enable them to grow in their profession and

pursue lifelong learning through post-graduation and professional

development.

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

PREREQUISITES:

A basic knowledge of programming.

COURSE OBJECTIVES:

• To provide knowledge of Software Testing Methods.

• To develop skills in software test automation and management using latest

tools.

COURSE OUTCOME

1. Design and develop the best test strategies in accordance to the development

model

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

Course Name: STM LAB Course Code: CS625PE

Year/Semester: III/II Regulation: R18

S. No List of

Experiments
Page

No.
1 Recording in context sensitive mode and analog mode
2 GUI checkpoint for single property
3 GUI checkpoint for single object/window
4 GUI checkpoint for multiple objects

5
a) Bitmap checkpoint for object/window

a) Bitmap checkpoint for screen area

6 Database checkpoint for Default check
7 Database checkpoint for custom check
8 Database checkpoint for runtime record check

9

• Data driven test for dynamic test data submission

• Data driven test through flat files

• Data driven test through front grids

• Data driven test through excel test

10
• Batch testing without parameter passing

• Batch testing with parameter passing

11 Data driven batch
12 Silent mode test execution without any interruption
13 Test Case For Calculator In Windows Application
14 Test Cases For Mobile Application Testing
15 Test Cases For Cloud Environment Testing
16 Test Cases for Pen

FACULT

 HO

D, CSE

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

INTRODUCTION TO SOFTWARE TESTING

Software Testing is the process of identifying the accuracy and quality

of the software product and service under test. Apparently, it was born to

validate whether the product fulfils the particular prerequisites, needs, and

desires of the client. At the end of the day, testing executes a framework or

application with a specific end goal to point out bugs, errors or defects. The

responsibility of testing is to point out the issues of bugs and give Dev

(Developers) a clue to help them fix it right following the requirements.

• Software Testing Objectives:

• Uncover as many as errors (or bugs) as possible in a given product.

• Demonstrate a given software product matching its requirement specifications.

• Validate the quality of a software using the minimum cost and efforts.

• Generate high-quality test cases, perform effective tests, and issue correct

and helpful problem reports.

Software testing is often divided into 2 main processes: Verification and Validation.

Verification in software testing is the process when your team just need to

check whether the software, system or framework consistent, aligned with the

requirements of a documentation.

Validation is the process that your team needs to verify accuracy of the

system. In this process, you will look back to product, system and think about

what users actually want and what has been done.

In Software Testing, there is the difference between Errors, Defects, and Bugs

that we should distinguish clearly to avoid misunderstanding problem.

Error is a deviation from the actual and the expected result. It represents the

mistakes made by people.

Bug is an error found BEFORE the application goes into production. A

programming error that causes a program to work poorly, produce incorrect

results, or crash. An error in software or hardware that causes a program to

malfunction.

Defect happens once the error is identified during testing; it is logged as a

‘Defect’ in the tracking system.

Failure is the incapacity of a system to conduct its required functions within

clarified performance requirements, literally a disappointment or a letdown.

And no one wants to do business with a failure.

• Why is Software Testing important?

One of the controversy topics that is mentioned in a long meeting before

starting or after reviewing a project’s sprint is about the associated costs of

fixing bugs. The more extended a bug goes undetected, the more exorbitant it is

to settle. Basic costs versus benefits investigation will indicate overwhelmingly

that the advantages of utilizing a QA Testing Engineer to approve the code far

exceed the expenses.

Besides the expensive cost needed to be paid for the delay of detecting

bugs, if the testing team missed out on capturing or identifying the risks and

software issues accurately or exhaustively it can lead to some disasters. For

example: It took NASA 7 years to identify gigantic hole in the sky due to an

error in the data analysis software, the huge hole in the ozone was flagged as a

software issue in the system and was ignored because they did not expect such

an extreme deviation in the results thrown up by the software.

When NASA engineers reviewed their raw data, they realized that their

satellites had indeed detected the hole long ago, but they completely missed it.

So that, here are 5 reasons why every member of the team should take an eye on

Product Testing for the whole process.

To ensure there is no difference between the actual and the expectation

Software testing is created to detect any problems occurred during

coding and developing a new function or feature of a software product before it

is delivered to the end users. These upcoming features should be correctly

matched with what it is supposed to be. Also, Testing tool will be a

gadget checking whether your team decently refers to the requirement. Hence,

it basically is a device helping to close the gap between actual and expectation

in making a software product.

To make sure your product is powerful enough no matter how many people are

using.

There is a big distinction when there is a person using your product

referring to hundreds of people trying to do the same thing at the same time.

Your software needs to be strong enough to guarantee that there will be no

crashing down or loading annoying happened when a number of people are

trying to run your products. Therefore, it should be smoothly and perfectly

working with everyone.

To figure out as many as possible the chance of bugs generating.

It can’t be denied to say that nothing is perfect. There is always some

unseen problems which may generate during using your application. The

responsibility of testing tool is to avoid bugs found by users. We, who develop

this application/software product should take the duty of falling down as many

as possible the number of bugs which may interrupt users in future, so deliver

the best experience for our users whilst using our apps.

To offer a product that can perfectly work on different browsers and tech devices

At the booming moment of this technology era, we, fortunately,

welcome the existence of a number of technology devices, browsers, and

operating systems, giving us the chance to choose different technology

instruments to greater our tech experience. Therefore, the stress of creating an

application or product which could perfectly work on most of the technology

instruments has never been so great before.

To deliver the best product that we can.

Again, testing tool is created to provide the most excellent software

product and service to the end users. Of course, we couldn’t bring the best

(since there is nothing perfect, we all know) but we could minimize the chance

of bugs occurred within our capability. Before releasing, we could be proud and

confident enough on the product we bring to market. In any case, unseen bugs

may have a real impact on a real person. Therefore, if we could have a chance

to encounter the bug before the users find it out, nothing could be greater than

this.

• Type of Software Testing:

Testing is surely a fundamental part of software development. Poor

testing methodologies cause the troublesome products and unsustainable

development. Having a well-prepared testing plan makes a product be more

competitive and assure the products coming in a predictable timeline associated

with high quality.

Apparently, a product is usually tested from a very early stage when it is

just a small code tested piece by piece then being tested at the final of

development when it is under the shape of a full application or software product

in general. Of course, there are a number of Software Testing types out there

(more than 100 different types in general); however, at the beginning, we just

need to adjust a few common types that every product usually goes through

before going further.

Unit Test

It is not exaggerated saying that people usually hear about Unit Test

before getting noted about the software testing industry since it is the most

basic testing used at the developer level. We focus on the single piece of unit

code whilst it is already isolated from any outside interaction or dependency on

any module before. This test requires the developer checking the smallest units

of codes they have written and prove that units can work independently.

Integration Test

Still, at the developer level, after Unit Test, the combination (or

integration) of these smallest codes should also be checked carefully.

Integration test provides the testing modules which access to network,

databases and file system. They will indicate whether the database and the

network are working well when they are combined into the whole system. Most

importantly, the connection between small units of code tested in the previous

stage will be proven at this stage.

Functional Testing

There is no doubt to claim that functional testing is the higher level of

test type should be used after Integration Test. Functional tests check for the

accuracy of the output with respect to the input defined in the specification. Not

much emphasis is given to the intermediate values but more focus is given on

the final output created.

Smoke Test

Smoke Tests analogy comes from the electronics where an issue means

the circuit board giving out smoke. After functional tests are done, a simple test

will be executed at the starting point, after a fresh installation and newer input

values.

Regression Test

Whenever complex bugs are stuck in a system, typically which affect

the core areas of the system, regression tests are used to retest all the modules

of the system.

UI Test

Well, apart from those core testing types above, GUI test is also a well-

known and really popular in software engineering industry now. This graphic

user interface testing ensures the specific application or products being friendly

for all users. Principally, GUI Testing evaluates design components such as

layout, colors, fonts, size, and so on. Also, GUI Testing can be executed both

manually and automatically.

This is only a brief introduction to what is software testing. If you are

interested in learning more about the discipline, you might want to start with

webinars and eBooks on Huddle or try this post on Manual Testing &

Automated Testing.

EXPERIMENT 1

RECORDING IN CONTEXT SENSITIVE MODE AND

ANALOG MODE

Context Sensitive mode records the operations you perform on your application

in terms of its GUI objects. As you record, WinRunner identifies each GUI

object you click (such as a window, button, or list), and the type of operation

performed (such as drag, click, or select).

For example, if you click the Open button in an Open dialog box, WinRunner

records the following: button_press ("Open");

When it runs the test, WinRunner looks for the Open dialog box and the Open

button represented in the test script. If, in subsequent runs of the test, the button

is in a different location in the Open dialog box, WinRunner is still able to find

it.

Use Context Sensitive mode to test your application by operating on its user interface.

To record a test in context sensitive mode:

• Choose Test > Record–Context Sensitive or click the Record–Context Sensitive

button.

The letters Rec are displayed in dark blue text with a light

blue background on the Record button to indicate that a context

sensitive record session is active.

• Perform the test as planned using the keyboard and mouse.

Insert checkpoints and synchronization points as needed by choosing the

appropriate commands from the User toolbar or from the Insert menu

menu: GUI Checkpoint, Bitmap Checkpoint, Database Checkpoint, or

Synchronization Point.

• To stop recording, click Test > Stop Recording or click Stop.

EXPERIMENT 2

GUI CHECKPOINT FOR SINGLE PROPERTY

You can check a single property of a GUI object. For example, you can

check whether a button is enabled or disabled or whether an item in a list is

selected. To create a GUI checkpoint for a property value, use the Check

Property dialog box to add one of the following functions to the test script:

button_check_info scroll_check_info

edit_chec

k_info

static_che

ck_info

list_check

_info

win_chec

k_info

obj_chec

k_info

To create a GUI checkpoint for a property value:

• Choose Insert > GUI Checkpoint > For Single Property. If you are recording in

Analog mode, press the CHECK GUI FOR SINGLE PROPERTY softkey in order

to avoid extraneous mouse movements.

The WinRunner window is minimized, the mouse pointer becomes a pointing hand,

and a help window opens on the screen.

• Click an object.

The Check Property dialog box

opens and shows the default function for the selected object. WinRunner

automatically assigns argument values to the function.

• You can modify the arguments for the property check.

• To modify assigned argument values, choose a value from the Attribute

list. The expected value is updated in the Expected text box.

• To choose a different object, click the pointing hand and then click an

object in your application. WinRunner automatically assigns new

argument values to the function.

Note: that if you click an object that is not compatible with the selected

function, a message states that the current function cannot be applied to the

selected object. Click OK to clear the message, and then click Close to close

the Check Property dialog box. Repeat steps 1 and 2.

• Click Paste to paste the statement into your test script.

EXPERIMENT 3

GUI CHECKPOINT FOR SINGLE OBJECT/WINDOW

You can create a GUI checkpoint to check a single object in the application

being tested. You can either check the object with its default properties or you

can specify which properties to check.

Each standard object class has a set of default checks. For a complete list of

standard objects, the properties you can check, and default checks, see

“Property Checks and Default Checks”.

Creating a GUI Checkpoint using the Default Checks

You can create a GUI checkpoint that performs a default check on the property

recommended by WinRunner. For example, if you create a GUI checkpoint that

checks a push button, the default check verifies that the push button is enabled.

To create a GUI checkpoint using default checks:

• Choose Insert > GUI Checkpoint >for Object/Window, or click the GUI

Checkpoint for Object/Window button on the User toolbar. If you are

recording in Analog mode, press the CHECK GUI FOR

OBJECT/WINDOW soft key in order to avoid extraneous mouse

movements. Note that you can press the CHECK GUI FOR

OBJECT/WINDOW soft key in Context Sensitive mode as well.

The WinRunner window is minimized, the mouse pointer becomes a

pointing hand, and a help window opens on the screen.

• Click an object.

• WinRunner captures the current value of the property of the GUI object

being checked and stores it in the test’s expected results folder. The

WinRunner window is restored and a GUI checkpoint is inserted in the test

script as an obj_check_gui statement.

Creating a GUI Checkpoint by Specifying which Properties to Check

You can specify which properties to check for an object. For example, if you

create a checkpoint that checks a push button, you can choose to verify that it is

in focus, instead of enabled.

To create a GUI checkpoint by specifying which properties to check:

• Choose Insert > GUI Checkpoint >for Object/Window, or click the

GUI Checkpoint for Object/Window button on the User toolbar. If you

are recording in Analog mode, press the CHECK GUI FOR

OBJECT/WINDOW softkey in order to avoid extraneous mouse

movements.

Note that you can press the CHECK GUI FOR OBJECT/WINDOW soft

key in Context Sensitive mode as well.

The Win Runner window is minimized, the mouse pointer becomes a pointing

hand, and a help window opens on the screen.

• Double-click the object or window. The Check GUI dialog box opens.

• Click an object name in the Objects pane. The Properties pane lists all the

properties for the selected object.

• Select the properties you want to check.

• To edit the expected value of a property, first select it. Next, either click

the Edit Expected Value button, or double-click the value in the Expected

Value column to edit it.

• To add a check in which you specify arguments, first select the property for

which you want to specify arguments. Next, either click the Specify Arguments

button, or double-click in the Arguments column. Note that if an ellipsis (three

dots) appears in the Arguments column, then you must specify arguments for a

check on this property. (You do not need to specify arguments if a default

argument are specified.) When checking standard objects, you only specify

arguments for certain properties of edit and static text objects. You also specify

arguments for checks on certain properties of nonstandard objects.

• To change the viewing options for the properties of an object, use the Show Properties

buttons.

• Click OK to close the Check GUI dialog box.

Win Runner captures the GUI information and stores it in the test’s expected

results folder. The Win Runner window is restored and a GUI

checkpoint is inserted in the test script as an obj_check_gui or a

win_check_gui statement. For more information, see “Understanding GUI

Checkpoint Statements”.

EXPERIMENT 4

GUI checkpoint for multiple objects

You can use a GUI checkpoint to check two or more objects in a window. For a

complete list of standard objects and the properties you can check, see

“Property Checks and Default Checks”.

To create a GUI checkpoint for two or more objects:

• Choose Insert > GUI Checkpoint > For Multiple Objects or click the GUI

Checkpoint for Multiple Objects button on the User toolbar. If you are

recording in Analog mode, press the CHECK GUI FOR MULTIPLE

OBJECTS softkey in order to avoid extraneous mouse movements. The

Create GUI Checkpoint dialog box opens.

• Click the Add button. The mouse pointer becomes a pointing hand and a help

window opens.

• To add an object, click it once. If you click a window title bar or menu bar, a

help window prompts you to check all the objects in the window.

• The pointing hand remains active. You can continue to choose objects by

repeating step 3 above for each object you want to check.

•

Click the right mouse button to stop the selection process and to restore

the mouse pointer to its original shape. The Create GUI Checkpoint dialog

box reopens.

• The Objects pane contains the name of the window and objects included

in the GUI checkpoint. To specify which objects to check, click an object

name in the Objects pane.

The Properties pane lists all the properties of the object. The default properties are

selected.

• To edit the expected value of a property, first select it. Next, either click

the Edit Expected Value button, or double-click the value in the

Expected Value column to edit it.

• To add a check in which you specify arguments, first select the property

for which you want to specify arguments. Next, either click the

Specify Arguments button, or double-click in the Arguments column.

Note that if an ellipsis appears in the Arguments column, then you

mustspecify arguments for a check on this property. (You do not need to

specify arguments if a default argument is specified.) When checking

standard objects, you only specify arguments for certain properties of edit

and static text objects.You also specify arguments for checks on certain

properties of nonstandard objects.

• To change the viewing options for the properties of an object, use the Show

Properties buttons.

• To save the checklist and close the Create GUI Checkpoint dialog box, click OK.

WinRunner captures the current property values of the selected GUI objects

and stores it in the expected results folder. A win_check_gui statement is

inserted in the test script.

EXPERIMENT 5

• Bitmap checkpoint for object/window

You can capture a bitmap of any window or object in your application by

pointing to it. The method for capturing objects and for capturing windows is

identical. You start by choosing Insert > Bitmap Checkpoint > For

Object/Window. As you pass the mouse pointer over the windows of your

application, objects and windows flash. To capture a window bitmap, you click

the window’s title bar. To capture an object within a window as a bitmap, you

click the object itself.

Note that during recording, when you capture an object in a window that is not

the active window, WinRunner automatically generates a set_window

statement.

To capture a window or object as a bitmap:

• Choose Insert > Bitmap Checkpoint > For Object/Window or click the

Bitmap Checkpoint for Object/Window button on the User toolbar.

Alternatively, if you are recording in Analog mode, press the CHECK

BITMAP OF OBJECT/WINDOW softkey.

The WinRunner window is minimized, the mouse pointer becomes a pointing

hand, and a help window opens.

• Point to the object or window and click it. WinRunner captures the

bitmap and generates a win_check_bitmap or obj_check_bitmap

statement in the script.

The TSL statement generated for a window bitmap has the following syntax:

win_check_bitmap (object, bitmap, time);

For an object bitmap, the syntax is:

obj_check_bitmap (object, bitmap, time);

For example, when you click the title bar of the main window of the Flight

Reservation application, the resulting statement might be:

win_check_bitmap ("Flight Reservation", "Img2", 1);

However, if you click the Date of Flight box in the same window, the statement

might be: obj_check_bitmap ("Date of Flight:", "Img1", 1);

• Bitmap checkpoint for screen area

When working in Context Sensitive mode, you can capture a bitmap of a

window, object, or of a specified area of a screen. WinRunner inserts a

checkpoint in the test script in the form of either a win_check_bitmap or

obj_check_bitmap statement.

To check a bitmap, you start by choosing Insert > Bitmap Checkpoint.

To capture a window or another GUI object, you click it with the mouse. To

capture an area bitmap, you mark the area to be checked using a crosshairs

mouse pointer.

Note that when you record a test in Analog mode, you should press the

CHECK BITMAP OF WINDOW softkey or the CHECK BITMAP OF

SCREEN AREA softkey to create a bitmap checkpoint. This prevents

WinRunner from recording extraneous mouse movements. If you are

programming a test, you can also use the Analog function check_window to

check a bitmap.

If the name of a window or object varies each time you run a test, you can

define a regular expression in the GUI Map Editor. This instructs WinRunner to

ignore all or part of the name. For more information on using regular

expressions in the GUI Map Editor, see “Editing the GUI Map.”

Your can include your bitmap checkpoint in a loop. If you run your

bitmap checkpoint in a loop, the results for each iteration of the checkpoint are

displayed in the test results as separate entries. The results of the checkpoint

can be viewed in the Test Results window. For more information, see

“Analyzing Test Results.”

EXPERIMENT 6

Database checkpoint for Default check

When you create a default check on a database, you create a standard database

checkpoint that checks the entire result set using the following criteria:

• The default check for a multiple-column query on a database is a case

sensitive check on the entire result set by column name and row index.

• The default check for a single-column query on a database is a case

sensitive check on the entire result set by row position.

If you want to check only part of the contents of a result set, edit the expected

value of the contents, or count the number of rows or columns, you should

create a custom check instead of a default check. For information on creating a

custom check on a database, see “Creating a Custom Check on a Database,”

Creating a Default Check on a Database Using

ODBC or Microsoft Query You can create a default

check on a database using ODBC or Microsoft Query.

To create a default check on a database using ODBC

or Microsoft Query:

• Choose Insert > Database Checkpoint > Default Check or click the

Default Database Checkpoint button on the User toolbar. If you are recording in

Analog mode, press the CHECK DATABASE (DEFAULT) softkey in order to

avoid extraneous mouse movements. Note that you can press the CHECK

DATABASE

(DEFAULT) softkey in Context Sensitive mode as well.

• If Microsoft Query is installed and you are creating a new query, an

instruction screen opens for creating a query.

If you do not want to see this message next time you create a default

database checkpoint, clear the Show this message next time check box.

Click OK to close the instruction screen.

If Microsoft Query is not installed, the Database Checkpoint wizard opens

to a screen where you can define the ODBC query manually. For additional

information, see “Setting ODBC (Microsoft Query) Options”

• Define a query, copy a query, or specify an SQL statement. For

additional information, see “Creating a Query in ODBC/Microsoft

Query” or “Specifying an SQL Statement”

• WinRunner takes several seconds to capture the database query and restore

the WinRunner window.

WinRunner captures the data specified by the query and stores it in the test’s

exp folder. WinRunner creates the msqr*.sql query file and stores it and the

database checklist in the test’s chklist folder. A database checkpoint is inserted

in the test script as a db_check statement.

Creating a Default Check on a Database

Using Data Junction You can create a

default check on a database using Data

Junction. To create a default check on a

database:

• Choose Insert > Database Checkpoint > Default Check or click the

Default Database Checkpoint button on the User toolbar.

If you are recording in Analog mode, press the CHECK DATABASE

(DEFAULT) softkey in order to avoid extraneous mouse movements. Note

that you can press the CHECK DATABASE (DEFAULT) softkey in

Context Sensitive mode as well.

For information on working with the Database Checkpoint wizard, see

“Working with the Database Checkpoint Wizard”

• An instruction screen opens for creating a query.

If you do not want to see this message next time you create a default

database checkpoint, clear the Show this message next time check box.

Click OK to close the instruction screen.

• Create a new conversion file or use an existing one. For additional

information, see “Creating a Conversion File in Data Junction”

• WinRunner takes several seconds to capture the database query and restore

the WinRunner window.

WinRunner captures the data specified by the query and stores it in the test’s

exp folder. WinRunner creates the *.djs conversion file and stores it in the

checklist in the test’s chklist folder. A database checkpoint is inserted in the

test script as a db_check statement.

EXPERIMENT 7

Database checkpoint for custom check

When you create a custom check on a database, you create a standard database

checkpoint in which you can specify which properties to check on a result set.

You can create a custom check on a database in order to:

• check the contents of part or the entire result set

• edit the expected results of the contents of the result set

• count the rows in the result set

• count the columns in the result set

You can create a custom check on a database using ODBC, Microsoft Query or Data

Junction.

To create a custom check on a database:

• Choose Insert > Database Checkpoint > Custom Check. If you are

recording in Analog mode, press the CHECK DATABASE (CUSTOM)

softkey in order to avoid extraneous mouse movements. Note that you can

press the CHECK DATABASE (CUSTOM) softkey in Context Sensitive

mode as well.

• Follow the instructions on working with the Database Checkpoint wizard, as

described in “Working with the Database Checkpoint Wizard”

• If you are creating a new query, an instruction screen opens for creating a query.

If you do not want to see this message next time you create a default

database checkpoint, clear the Show this message next time check box.

• If you are using ODBC or Microsoft Query, define a query, copy a query, or

specify an SQL statement.

If you are using Data Junction, create a new conversion file or use an existing one.

• If you are using Microsoft Query and you want to be able to parameterize

the SQL statement in the db_check statement which will be generated, then

in the last wizard screen in Microsoft Query, click View data or edit query

in Microsoft Query. Follow the instructions in “Parameterizing Standard

Database Checkpoints”

• WinRunner takes several seconds to capture the database query and restore

the WinRunner window.

The Check Database dialog box opens

EXPERIMENT 8

Database checkpoint for runtime record check

You can add a runtime database record checkpoint to your test in order to

compare information displayed in your application during a test run with the

current value(s) in the corresponding record(s) in your database. You add

runtime database record checkpoints by running the Runtime Record

Checkpoint wizard. When you are finished, the wizard

inserts the appropriate db_record_check statement into your script.

Note that when you create a runtime database record checkpoint, the data in the

application and in the database are generally in the same format. If the data is in

different formats, you can follow the instructions in “Comparing Data in

Different Formats” to create a runtime database record checkpoint. Note that

this feature is for advanced WinRunner users only.

Using the Runtime Record Checkpoint Wizard

The Runtime Record Checkpoint wizard guides you through the steps of

defining your query, identifying the application controls that contain the

information corresponding to the records in your query, and defining the

success criteria for your checkpoint.

To open the wizard, select Insert > Database Checkpoint >

Runtime Record Check. Define Query Screen

The Define Query screen enables you to select a database and define a query

for your checkpoint. You can create a new query from your database using

Microsoft Query, or manually define an SQL statement

You can choose from the following options:

• Create new query: Opens Microsoft Query, enabling you to create a new

query. Once you finish defining your query, you return to WinRunner.

• Specify SQL statement: Opens the Specify SQL Statement screen in the

wizard, enabling you to specify the connection string and an SQL

statement.

Specify SQL Statement Screen

The Specify SQL Statement screen enables you to manually specify the

database connection string and the SQL statement.

Enter the required information:

• Connection String: Enter the connection string, or click the Create button

• Create: Opens the ODBC Select Data Source dialog box. You can select a

*.dsn file in the Select Data Source dialog box to have it insert the

connection string in the box for you.

• SQL: Enter the SQL statement.

The Match Database Field screen enables you to identify the application control

or text in your application that matches the displayed database field. You repeat

this step for each field included in your query. This screen includes the

following options:

• Database field: Displays a database field from your query. Use the pointing

hand to identify the control or text that matches the displayed field name.

• Logical name: Displays the logical name of the control you select on your

application.

(Displayed only when the Select text from a Web page check box is cleared.)

• Text before: Displays the text that appears immediately

before the text to check. (Displayed only when the Select

text from a Web page check box is checked.)

• Text after: Displays the text that appears immediately

after the text to check. (Displayed only when the Select

text from a Web page check box is selected.)

• Select text from a Web page: Enables you to indicate the text on your

Web page containing the value to be verified.

The Matching Record Criteria screen enables you to specify the number of

matching database records required for a successful checkpoint.

• Exactly one matching record: Sets the checkpoint to succeed if exactly

one matching database record is found.

• One or more matching records: Sets the checkpoint to succeed if one or

more matching database records are found.

• No matching records: Sets the checkpoint to succeed if no matching

database records are found. When you click Finish on the Runtime Record

Checkpoint wizard, a db_record_check statement is inserted into your script.

Comparing Data in Different Formats

Suppose you want to compare the data in your application to data in the

database, but the data is in different formats. You can follow the instructions

below to create a runtime database record checkpoint without using the

Runtime Record Checkpoint Wizard. Note that this feature is for advanced

WinRunner users only.

For example, in the sample Flight Reservation application, there are three radio

buttons in the Class box. When this box is enabled, one of the radio buttons

is always selected. In the database of the

sample Flight Reservation application, there is one field with the values 1, 2, or

3 for the matching class.

To check that data in the application and the database have the same

value, you must perform the following steps:

• Record on your application up to the point where you want to verify the data

on the screen. Stop your test. In your test, manually extract the values from

your application.

• Based on the values extracted from your application, calculate the expected

values for the database. Note that in order to perform this step, you must

know the mapping relationship between both sets of values. See the example

below.

• Add these calculated values to any edit field or editor (e.g. Notepad). You

need to have one edit field for each calculated value. For example, you can

use multiple Notepad windows, or another application that has multiple edit

fields.

• Use the GUI Map Editor to teach WinRunner:

• the controls in your application that contain the values to check

• the edit fields that will be used for the calculated values

• Add TSL statements to your test script to perform the following operations:

• extract the values from your application

• calculate the expected database values based on the values extracted from your

application

• write these expected values to the edit fields

• Use the Runtime Record Checkpoint wizard, described in “Using the

Runtime Record Checkpoint Wizard,” to create a db_record_check

statement.

When prompted, instead of pointing to your application control with the

desired value, point to the edit field where you entered the desired calculated

value.

Example of Comparing Different Data Formats in a Runtime Database Record

Checkpoint

The following excerpts from a script are used to check the Class field in the

database against the radio buttons in the sample Flights application. The steps

refer to the instructions.

step 1

Extract values from GUI objects in application. button_get_state("First",vFirst);

button_get_state("Business",vBusiness); button_get_state("Economy",vEconomy);

1

The Objects pane contains “Database check” and the name of the *.sql

query file or *.djs conversion file included in the database checkpoint. The

Properties pane lists the different types of checks that can be performed on

the result set. A check mark indicates that the item is selected and is

included in the checkpoint.

• Select the types of checks to perform on the database. You can perform the following

checks:

ColumnsCount: Counts the number of columns in the result set.

Content: Checks the content of the result set, as described in “Creating a

Default Check on a Database,”

RowsCount: Counts the number of rows in the result set.

If you want to edit the expected value of a property, first select it. Next, either

click the Edit Expected Value button, or double-click the value in the Expected

Value column.

• For ColumnsCount or RowCount checks on a result set, the expected

value is displayed in the Expected Value field corresponding to the

property check. When you edit the expected value for these property

checks, a spin box opens. Modify the number that appears in the spin box.

• For a Content check on a result set, <complex value> appears in the

Expected Value field corresponding to the check, since the content of the

result set is too complex to be displayed in this column. When you edit

the expected value, the Edit Check dialog box opens. In the Select

Checks tab, you can select which checks to perform on the result set,

based on the data captured in the query. In the Edit Expected Data tab,

you can modify the expected results of the data in the result set.

• Click OK to close the Check Database dialog box.

WinRunner captures the current property values and stores them in the test’s

exp folder. WinRunner stores the database query in the test’s chklist folder. A

database checkpoint is inserted in the test script as a db_check statement.

Steps:

• Create DataSource

•

EXPERIMENT 9

B. Data driven test through flat files

As in the Data Driven Testing guide, create a SoapUI Project from the publicly

available CurrencyConverter WSDL

(http://www.webservicex.com/CurrencyConvertor.asmx?wsdl), then add a

TestSuite and a TestCase and open its editor:

Now add a DataSource TestStep and select the DataSource type “Directory”

from the dropdown in the toolbar. You should now have:

https://www.soapui.org/Data-Driven-Testing/functional-tests.html
http://www.webservicex.com/CurrencyConvertor.asmx?wsdl

Now, select the directory where your input files are stored, add an applicable

filter (e.g. “*.txt” or “*.xml” for text or XML files respectively), and

potentially encoding.

Now click on the icon from the screen below and enter a property that

will contain the content of each file

Quick tip: If your property is named “Filename” it will contain the name of the

file instead of file’s contents.

• Create Test Steps

Now you need to add a Test Request to your TestCase which you will use to

test the Web Service. Press the SOAP Request button in the TestCase editor

and select the ConversionRate operation in the CurrencyConverterSoap

Interface.

Press OK in all dialogs. A SOAP Request Step will be added to the TestCase

and the editor for the request is opened. Switch to the XML editor (if not

already there):

Now, I’m operating under the assumption that you have a fully built request

in each of the files in your directory.

An example of an input file would be:

So, based on that, remove all the content in the XML tab, right-click and

select the path to your DataSource property:

Note: If an XPATH window comes up, just click OK without

selecting anything. Now your request should look like this:

• Add DataSource Loop

As a final step, we just need to iterate through all the files in our DataSource.

So in your TestCase, add a DataSource loop step, and double click it to

configure as in the picture below:

Click OK.

• That’s it

Now if you click on the icon in the test case window, you can see the

whole test run through each file:

C. Data driven test through excel test

Data-driven testing (DDT) is taking a test, parameterizing it and then running

that test with varying data. This allows you to run the same test case with many

varying inputs, therefore increasing coverage from a single test. In addition to

increasing test coverage, data driven testing allows the ability to build both

positive and negative test cases into a single test. Data-driven testing allows

you to test the form with a different set of input values to be sure that the

application works as expected.

It is convenient to keep data for automated tests in special storages that support

sequential access to a set of data, for example, Excel sheets, database tables,

arrays, and so on. Often data is stored either in a text file and are separated by

commas or in Excel files and are presented as a table. If you need to add more

data, you simply modify the file either in any text editor or in Microsoft Excel

(in case of hard-coded values, you should modify both data and code).

Data-driven test includes the following operations performed in a loop:

• Retrieving input data from storage

• Entering data in an application form

• Verifying the results

• Continuing with

the next set of input data

Pre-requisites:

• Java JDK 1.5 or above

• Apache POI library v3.8 or above

• Eclipse 3.2 above

• Selenium server-standalone-2.47.x.jar

• TestNG-6.9

Data Excel

Scenario -Open the application and login with different username and

password. This data will be coming from excel sheet

Step 1: The first and the foremost step is to create the test data with which we

would be executing the test scripts. Download JAR files of Apache POI and

Add Jars to your project library. Let us create an excel file and save it as

“Credentials.xlsx” and place it in the created package location.

We will use the data excel file and the file looks as below

Step 2: Create a POM class file under com.coe.pom name it as

“Loginpage.java”. Inside a login page we write code to identify the

webelements of login page using @FindBy annotation. To initialize the web

elements we use initelements of page factory class. We utilize the elements by

writing a method to it.

Step 3: Create a ‘New Class‘file, by right click on the package com.coe.script

and select New > Class and name it as “SuperClass.java”, and create a new

class file with a name “ValidLoginLogout.java”.

Step 4: Create some test data in excel that we will pass to script. For demo

purpose I have taken username and password in excel.

Step 5: Copy and paste the below mentioned code under com.coe.pom package class.

EXPERIMENT 10

A. Batch testing without parameter passing

A batch test is a test script that calls other tests. You program a batch test by

typing call statements directly into the test window and selecting the Run in

batch mode option in the Run category of the General Options dialog box

before you execute the test.

A batch test may include programming elements such as loops and

decisionmaking statements. Loops enable a batch test to run called tests a

specified number of times. Decision-making statements such as if/else and

switch condition test execution on the results of a test called previously by the

same batch script. See “Enhancing Your Test Scripts with Programming,” for

more information.

For example, the following batch test executes three tests in succession, then

loops back and calls the tests again. The loop specifies that the batch test should

call the tests ten times.

for (i=0; i<10; i++)

{

call

"c:\

\pbt

ests

\\op

en"

();

call

"c:\

\pbt

ests

\\set

up"

();

call

"c:\

\pbt

ests

\\sa

ve"

();

}

To enable a batch test:

• Choose Tools >

General

Options. The

General Options

dialog box

opens.

• Click the Run category.

• Select the Run in batch mode check box.

Running a Batch Test:You execute a batch test in the same way that you execute

a regular test. Choose a mode (Verify, Update, or Debug) from the list on the

toolbar and choose Test > Run from Top. See “Understanding Test Runs,”

for more information.

When you run a batch test, WinRunner opens and executes each called test. All

messages are suppressed so that the tests are run without interruption. If you

run the batch test in Verify mode, the current test results are compared to the

expected test results saved earlier. If you are running the batch test in order to

update expected results, new expected results are created in the expected results

folder

for each test. See “Storing Batch Test Results” below for more information.

When the batch test run is completed, you can view the test results in the Test

Results window.

Note that if your tests contain TSL texit statements, WinRunner interprets these

statements differently for a batch test run than for a regular test run. During a

regular test run, texit terminates test execution. During a batch test run, texit

halts execution of the current test only and control is returned to the batch test.

Data driven batch

EXPERIMENT 11

When you test your application, you may want to check how it performs the

same operations with multiple sets of data. For example, suppose you want to

check how your application responds to ten separate sets of data. You could

record ten separate tests, each with its own set of data.

Alternatively, you could create a data-driven test with a loop that runs ten

times. In each of the ten iterations, the test is driven by a different set of data. In

order for WinRunner to use data to drive the test, you must substitute fixed

values in the test with parameters. The parameters in the test are linked with

data stored in a data table. You can create data-driven tests using the

DataDriver wizard or by manually adding data-driven statements to your test

scripts.

For non-data-driven tests, the testing process is performed in three steps:

creating a test; running the test; analyzing test results. When you create a data-

driven test, you perform an extra two-part step between creating the test and

running it: converting the test to a data-driven test and creating a corresponding

data table.

The following diagram outlines the stages of the data-driven testing process in

WinRunner:

EXPERIMENT 12

Silent mode test execution without any interruption

1 Silent Mode to continue test execution without any interruption, we can use this run

setting.

1 Navigation Click Tools menu → Choose General options→ Select Run Tab →

Select Run in batch mode (Figure III . 18 . 1) − Click ... NOTE In silent mode ,

WinRunner is not able to execute tester interactive statements .

EXPERIMENT 13

Test case for calculator in windows application

Basic Operational Tests

Write the test cases based on the following functions and scenarios.

• Check the calculator if it starts by on button. If it is software based

calculator, then check if it starts via specific means like from searching

for calculator in search bar and then executing application. Or by

accessing menu item in the Windows.

• Check if the calculator window maximizes to certain window size.

• Check the if the calculator closes when the close button is

pressed or if the exit menu is clicked from file > exit option.

• Check if the help document is accessed from Help > Documentation.

• Check if the calculator allows copy and paste functionality.

• Check if the calculator has any specific preferences.

• Check if all the numbers are working (0 to 9)

• Check if the arithmetic keys (+, -, *, %, /) are working.

• Check if the clear key is working.

• Check if the brackets keys are working.

• Check if the sum or equal key is working.

• Check if the square and square root key is working.

Functionality Test Cases

• Check the addition of two integer numbers.

• Check the addition of two negative numbers.

• Check the addition of one positive and one negative number.

• Check the subtraction of two integer numbers.

• Check the subtraction of two negative numbers.

• Check the subtraction of one negative and one positive number.

• Check the multiplication of two integer numbers.

• Check the multiplication of two negative numbers.

• Check the multiplication of one negative and one positive number.

• Check the division of two integer numbers.

• Check the division of two negative numbers.

• Check the division of one positive number and one integer number.

• Check the division of a number by zero.

• Check the division of a number by negative number.

• Check the division of zero by any number.

• Check if the functionality using BODMAS/BIDMAS works as expected.

EXPERIMENT 14

TEST CASES FOR MOBILE APPLICATION TESTING

We can test the efficiency of the Mobile Applications in different ways. Following are some of

the types to be considered and develop the test cases

• USABILITY TEESTING: Check whether...

• Responsiveness of the application name and logo when the Application Manager is

clicked

• Receiving visual review for the user activities in the app within just three seconds

maximum.

• The functionality of exit options at any point when the app is running

• Keep away the unmapped keys

• Enabling highly responsive Mobile menu for Mobiles and Tablets.

• Easy navigation across various screens.

• PERFORMANCE TESTING: Check whether...

• Time is taken for launching the app.

• App performance during peak load scenarios

• Splash performance test and making sure it stays on the screen for no more than three

to four seconds.

• App performance when charging and during low battery conditions.

• Leverage Live Monitoring solutions for keeping the computing power of the

application on the check.

• Successful installing and uninstalling of the app within the stipulated timeframe.

• Graceful exit and display of error messages during low memory conditions

• Performance of the app during network issues and prompts for error alerts.

• App performance when the network resumes into action.

• ACCESSIBILITY TESTING: Checking whether...

• Screen reader testing

• Zooming the application

• Verification of the colourratios

• Readability testing of the application

• Ensure navigation is structured, consistent, descriptive, and logical

• SECURITY TESTING: Check whether...

• Security of the users’ payment data

• Security of Network protocols for running apps

• A breach in app’s security as well as error reporting

• Authentication of the app permissions and certificates

Main Test Cases to be considered while performing the Testing on Mobile Applications:

• Ensure the app has been launched by downloading and installing it for use.

• Verify that the mobile app display is adaptable to the device screen and also

ensures all menus on the app are functioning.

• Verify that the text on the mobile app is readable and clear.

• Check that the app display is adaptable and amenable to various display modes

(landscape /portrait).

• Verify that the app does not stop the functioning of other apps in the mobile device.

• Verify that in the play screen, the back key allows the app to go back to the start-up

screen.

• check that the app still operates as intended, if the device resumes from

inactive mode or from the lock screen.

• Check whether the app reminds the user to save setting changes or

changing of information before moving to other activities on the app.

• Verify that the on-screen keyboard appears immediately the user attempt to enter a

text.

• Check if the app behaves as designed if the mobile device is shaken

• Verify that the app still functions as designed when “battery low” notifications appear

on the screen.

• Check that the app goes into the background when on call

• Check that the app still operates as designed when a message or notification

pop-up from another app such as Face book messaged, Instagram, etc.

• If the app comes with users’ settings features, check if the app changes when

some form of changes is affected by the user.

• Check the Performance of the app on the different internet networks

such as 1G, 2G, 3G or 4 G network.

• Check that the app operates as intended when the device is connected to the internet

through WiFi.

• Check that the app still operates normally when there is an incoming call or SMS.

• Check that the app is adaptable to different mobile platforms or OS, like Android, iOS,

Microsoft, etc.

• Check that the font size and style of the app are compatible and readable to the users

• Verify that that the loading time for the app is not too long.

• Check that the app is still working as intended after the successful update of the app.

• Check how the app functions under different battery levels and temperatures.

• Verify that the app is not draining too much battery.

• Check that the app support image capturing.

• Check that the app does not log-out the user before the end of a session.

Example of Test cases:

Featu

re

Name

Stor

y ID
Test

Case

ID

Summary Preconditio

n
Execution Steps

Expect

ed

Result

Install

Mo

b-

121

4

Mob-

1214_

1

Verify that application should be Installed successfully.
1. Select the

application from google play.

• Click on

install button.

• Navigate to

the menu and click

on

the newly installed

app.

The

application

should

be Installed

successfully.

https://www.testrigtechnologies.com/service/performance-testing/

Uninstall

Mo

b-

121

4

Mob-

1214_

2

Verify that application should be Uninstalled successfully.

1. Execute

test case ID:

Mob-

1214_1

• Click on

settings.

• Select the

newly added

application on

Mob-1214_1.

• Click on

Uninstall button.

• Verify.

The

application

should

be Uninstalled

successfully.

Interrupti

on by

Calls

Mo

b-

121

4

Mob-

1214_

3

Verify

that user

should

able to

accept

Phone

calls

when

applicatio

n is

running

and

should

continue

from the

same

point.

1. Execute

test case ID:

Mob-

1214_1

• Open

the

applicati

on.

• Navigate here

an there for a

moment.

• Make a call

from another

device to the

device where you

have opened the

application.

• Pick up the call.

• Now

disconnect it and

verify.

User should

able to accept

Phone calls

when

application is

running and

should

continue from

the same

point.

Interruption

by

Messages

Mo

b-

121

4

Mob-

1214_

4

Verify that

user

should

able to

accept

messages

when

application

is running

and should

continue

from the

same point

after

reading

the

message.

1. Execute

test case ID:

Mob-

1214_1

• Open

the

applicati

on.

• Navigate here

an there for a

moment.

• Send a

message from

another device to

the device where

you have opened

the application.

• Read the

message.

• Close the

message app and

verify.

User should

able to accept

messages

when

application is

running and

should

continue from

the same point

after reading

the message.

Memory

Mo

b-

121

4

Mob-

1214_

5

Verify

that user

should

able to

see

proper

error

message

• The

device

memory

space

should

not

more

than 20

mb.

• Go to the

app from

google play

store.

• Click on the

install button.

• Wait till the

application get

installed and verify.

Application

should

display with

proper error

message

when device

memory is

low.

when

device

memory

is low.

• Execute

test case

ID: Mob-

1214_1

Note:

Applicati

on

memory

 requiremen

t is 25 MB.

Exit

applicatio

n

Mob

-

1214

Mob-

1214_

6

Verify that

user should

able to exit

from

application if

we click on

end key.

1. Execute

test case ID:

Mob-1214_1

• Click on

app and

open it.

• Now

press the

end key and

verify.

User should

able to exit

from

application if

we

click on

end key.

Battery

Mob

-

1214

Mob-

1214_

7

Verify that

user should

able to see

the alert

when

battery is

low.

1. Execute

test case ID:

Mob-1214_1

• Click on

app and

open it.

• Use the

applicatio

n till you

get the

low

battery

indication.

When

battery is

low the

alert should

display.

Battery

Consumptio

n

Mob

-

1214

Mob-

1214_

8

Verify that

application

should not

consume

more

battery

• Execute

test case ID:

Mob-1214_1

• Full

charge your

device.

• Click on

app and

open it.

• Use the

applicatio

n and

verify the

status of

the

battery in

15

mins

interva

l of

time.

Applicatio

n should

not

consume

more

battery

Charge

Mob

-

1214

Mob-

1214_

8

Verify that

application

should run

when inserting

the charger. It

will

not affect

the

applicatio

1. Execute

test case ID:

Mob-1214_1

• Click on

app and

open it.

• Insert the

charging pin

in between

running of

the

application

Application

should run

when

inserting the

charger. It

will not

affect the

application

n and verify.

EXPERIMENT 15

TEST CASES FOR CLOUD ENVIRONMENT TESTING

Sl.

N

O

Test

Scenarios
T

e

s

t

c

a

s

e

s

1

Performance

Testing

Failure due to one user action on the cloud should not affect other users

performance
Manual or automatic scaling should not cause any disruption
On all types of devices, the performance of the application should remain

the same

Overbooking at supplier end should not hamper the application

performance

2

Security

Testing

An only authorized customer should get access to data

Data must be encrypted well

Data must be deleted completely if it is not in use by a client

Data should be accessible with insufficient encryption

Administration on suppliers end should not access the customers' data
Check for various security settings like firewall, VPN, Anti-virus etc.

3

Functional

testing

Valid input should give the expected results
Service should integrate properly with other applications
A system should display customer account type when successfully login

to the cloud

When a customer chose to switch to other services the running service

https://www.guru99.com/performance-testing.html
https://www.guru99.com/performance-testing.html
https://www.guru99.com/performance-testing.html

should close automatically

4

Interoperabi

lity &

Compatibility

Testing

Validate the compatibility requirements of the application under test

system
Check browser compatibility in a cloud environment

Identify the Defect that might arise while connecting to a cloud
Any incomplete data on the cloud should not be transferred
Verify that application works across a different platform of cloud
Test application on the in-house environment and then deploy it

on a cloud environment

5

Network

Testing

Test protocol responsible for cloud connectivity

Check for data integrity while transferring data
Check for proper network connectivity

Check if packets are being dropped by a firewall on either side

6

Load

and

Stre

ss

Test

ing

Check for services when multiple users access the cloud services
Identify the Defect responsible for hardware or environment failure

Check whether system fails under increasing specific load

Check how a system changes over time under a certain load

https://www.guru99.com/defect-management-process.html

EXPERI

MENT-16

SAMPLE TEST

CASES FOR A

PEN

General Test Cases/Scenarios for all Types of Pen:

• The grip of the pen: Verify if you are able to hold the pen comfortably.

• Writing: Verify if you are able to write smoothly.

• Verify that the pen is not making any sound while writing.

• Verify the ink flow. It should not overflow nor get a break either.

• Verify the quality of the material used for the pen.

• Verify if the company or pen name is visible clearly.

• Verify if the pen color or text written on the pen is not getting removed easily.

• Verify, whether the width of the line drawn by the pen is as per the expectations or not.

• Verify the ink color, it should be consistent from the start till the end.

• Verify if a pen can write on a variety of papers like smooth, rough, thick, thin, glossy

etc.

• Verify for the waterproof ink. [Not for gel and ink pens].

• Verify if the ink will not get dried easily by keeping the pen open for some time. [Not

for ink pen]

• Verify if any other refill fits in the pen or not.

• Verify that the pen doesn’t have sharp edges or corners.

• Verify if the ink and external assembly of the pen is made of non-toxic material.

Negative Test Cases/Scenarios

• Put the pen in water and then try to write. Verify if you are able to write with

this pen. The pen can get wet because of the water spill on the table or during

the rainy season. It can be due to any reason.

• Drop the pen from some height (Table height) in the upside-down position.

Verify if you are able to write with this pen. By mistake, the pen can any time

fall on the ground. So testing this possibility to know its impact, will help us in

knowing the quality of the pen.

Performance Test Cases/Scenarios

• Verify how fast you can write with this pen.

• Verify if the pen will perform the same even though you use continuously for

hours.

• Verify ‘How much can be written in one refill/ink sac?’

• Verify if the tip or nib of the pen is not destroyed after continuous writing for

hours.

#1) Ball Pens with Cap:

Test Cases:

• Pen Cap: Verify if the pen cap is tight enough so that it will not get removed easily.

• Verify while holding in a pocket, if the pen cap is not getting removed.

#2) Tick

Tock ball pen:

Test Cases:

• Pen button: Verify when the pen button is pressed, if the refill comes out

and when pressed again it goes in.

• Verify the on and off modes of the pen.

• Pen button: Verify if the pen button will not get stuck if pressed continuously for 5 to

6 times.

• Verify the pen clip, it should be tight enough to hold in a pocket.

• Verify the tip of the pen, if you write by putting some pressure, then it should not get

broken.

• Verify if the tip is easy to open and close.

#3) Gel Pen:

Test Cases:

• Verify if the ink should not get overflowed.

• Verify that the ink should be dark enough. But at the same time, it should

not be too dark that it will make an impression on the other side of the

paper.

• Ink should get dried quickly. It should not get spread easily with hand.

• Verify if the Tip and End plug are getting opened and closed easily and correctly.

#4) Ink Pen:

Test Cases:

• Verify the ink flow through the nib.

• Verify that there is no ink leakage through the section.

• Verify while refilling ink, the sac is getting full.

• Verify for ink leakage by holding the pen in horizontal, vertical, and upside-down

positions.

#5) Multi Refill pen:

Test Cases:

• Verify all the buttons.

• Verify if the button color (if the pen has different color buttons) is matching

with refill color. [We are testing for the ease of use]

• Verify if you can change the refill easily. It should not be a complicated process.

• Verify the grip of this pen. Verify that the pen is not too bulky to hold.

DEPARTMENT OF COMPUTER SCIENCE

ENGINEERING VIVA-VOCE

QUESTION & ANSWERS

• What is Software Testing?

According to ANSI/IEEE 1059 standard – A process of analysing a software item to

detect the differences between existing and required conditions (i.e., defects) and to

evaluate the features of the software item. Click here for more details.

• What are the best practices for writing test cases?

• Write test cases with end-users’ perspective

• Write test steps in a simple way that anyone can follow them easily

• Make the test cases reusable

• Set the priority

• Provide a test case description, test data, expected result, precondition, post condition.

• Write invalid test cases along with valid test cases

• Follow proper naming conventions

• Review the test cases regularly and update them if necessary.

• What is configuration management?

Configuration management (CM) is a process of systems engineering to maintain

system resources, computer systems, servers, software, and product’s performance in a

consistent state. It helps to record all the changes made in the system and ensures that

the system performs as expected even though changes are made over time.

• Name some popular configuration management tools?

Some of the popular configuration management tools are Ansible, Chef, Puppet, Terraform,

Saltstack, etc.

• What if the software is so buggy it can’t really be tested at all?

If the software is so buggy, the first thing we need to do is to report the bugs and

categories them based on Severity. If the bugs are critical bugs, then it severely affects

schedules and indicates deeper problems in the software development process. So you

need to let the manager know about the bugs with proper documentation as evidence.

• What are Quality Assurance and Quality Control?

Quality Assurance: Quality Assurance involves in process-oriented activities. It

ensures the prevention of defects in the process used to make Software Applications.

So the defects don’t arise when the Software Application is being developed.

Quality Control: Quality Control involves in product-oriented activities. It executes the

program or code to identify the defects in the Software Application.

• What is Verification and Validation in software testing?

Verification is the process, to ensure that whether we are building the product

right i.e., to verify the requirements which we have and to verify whether we are

developing the product accordingly or not. Activities involved here are Inspections,

Reviews, Walk-throughs. Click here for more details.

Validation is the process, whether we are building the right product i.e., to

validate the product which we have developed is right or not. Activities involved in

this is Testing the software application. Click here for more details.

• What is the workbench concept in Software Testing?

Workbench is a practice of documenting how a specific activity must be performed.

It is often referred to as phases, steps, and tasks.

In every workbench there will be five tasks such as Input, Execute, Check, Output, and rework.

• What is Static Testing?

Static Testing involves reviewing the documents to identify the defects in the early

stages of SDLC. In static testing, we do code reviews, walkthroughs, peer reviews, and

static analysis of a source code by using tools like StyleCop, ESLint, etc.,

• What is Dynamic Testing?

Dynamic testing involves the execution of code. It validates the output with the expected

outcome.

• What is White Box Testing?

White Box Testing is also called as Glass Box, Clear Box, and Structural Testing. It

is based on applications internal code structure. In white-box testing, an internal

perspective of the system, as well as programming skills, are used to design test

cases. This testing usually was done at the unit level. Click here for more details.

Various white-box testing techniques are:

• Statement Coverage

• Decision Coverage

• Condition Coverage

• Multiple Condition Coverage

• What is Black Box Testing?

Black Box Testing is a software testing method in which testers evaluate the

functionality of the software under test without looking at the internal code structure.

This can be applied to every level of software testing such as Unit, Integration, System

and Acceptance Testing. Click here for more details.

• What is Grey Box Testing?

Grey box is the combination of both White Box and Black Box Testing. The tester

who works on this type of testing needs to have access to design documents. This

helps to create better test cases in this process.

• What is Positive and Negative Testing?

Positive Testing: It is to determine what system supposed to do. It helps to check whether

the application is justifying the requirements or not.

Negative Testing: It is to determine what system not supposed to do. It helps to find the

defects from the software.

• What is Test Strategy?

Test Strategy is a high-level document (static document) and usually developed by the

project manager. It is a document that captures the approach on how we go about

testing the product and achieve the goals. It is normally derived from the Business

Requirement Specification (BRS). Documents like Test Plan are prepared by keeping

this document as a base. Click here for more details.

• What is Test Plan and contents available in a Test Plan?

Test plan document is a document which contains the plan for all the testing activities

to be done to deliver a quality product. Test Plan document is derived from the Product

Description, SRS, or Use Case documents for all future activities of the project. It is

usually prepared by the Test Lead or Test Manager.

• Test plan identifier

• References

• Introduction

• Test items (functions)

• Software risk issues

• Features to be tested

• Features not to be tested

• Approach

• Items pass/fail criteria

• Suspension criteria and resolution requirements

• Test deliverables

• Remaining test tasks

• Environmental needs

• Staff and training needs

• Responsibility

• Schedule

• Plan risks and contingencies

• Approvals

• Glossaries

• Click here for more details.

• What is Test Suite?

Test Suite is a collection of test cases. The test cases which are intended to test an application.

• What is Test Scenario?

Test Scenario gives the idea of what we have to test. Test Scenario is like a high-level test case.

• What is Test Case?

Test cases are the set of positive and negative executable steps of a test scenario which

has a set of pre- conditions, test data, expected result, post-conditions and actual

results. Click here for more details.

• What is Test Bed?

An environment configured for testing. Test bed consists of hardware, software,

network configuration, an application under test, other related software.

• What is Test Environment?

Test Environment is the combination of hardware and software on which Test

Team performs testing. Example:

Application Type : Web Application

OS : Windows

Web Server : IIS

Web Page

Design : Dot Net Client Side Validation : JavaScript Server Side Scripting : ASP Dot Net

Database : MS SQL Server

Browser : IE/FireFox/Chrome

• What is Test Data?

Test data is the data that is used by the testers to run the test cases. Whilst running the

test cases, testers need to enter some input data. To do so, testers prepare test data. It

can be prepared manually and also by using tools. For example, To test a basic login

functionality having a user id, password fields. We need to enter some data in the user

id and password fields. So we need to collect some test data.

• What is Test Harness?

A test harness is the collection of software and test data configured to test a program

unit by running it under varying conditions which involves monitoring the output with

the expected output.

It contains the Test Execution Engine & Test Script Repository

• What is Test Closure?

Test Closure is the note prepared before test team formally completes the testing

process. This note contains the total no. of test cases, total no. of test cases executed,

total no. of defects found, total no. of defects fixed, total no. of bugs not fixed, total no

of bugs rejected etc.,

• What are the tasks of Test Closure activities in Software Testing?

Test Closure activities fall into four major groups.

Test Completion Check: To ensure all tests should be either run or deliberately skipped

and all known defects should be either fixed, deferred for a future release or accepted

as a permanent restriction.

Test Artifacts handover: Tests and test environments should be handed over to those

responsible for maintenance testing. Known defects accepted or deferred should be

documented and communicated to those who will use and support the use of the

system.

• What is test coverage?

Test coverage helps in measuring the amount of testing performed by a set of tests.

Test coverage can be done on both functional and non-functional activities. It assists

testers to create tests that cover areas which are missing.

• What is Code coverage?

Code coverage is different from Test coverage. Code coverage is about unit testing

practices that must target all areas of the code at least once. It is usually done by

developers or unit testers.

• List out Test Deliverables?

• Test Strategy

• Test Plan

• Effort Estimation Report

• Test Scenarios

• Test Cases/Scripts

• Test Data

• Requirement Traceability Matrix (RTM)

• Defect Report/Bug Report

• Test Execution Report

• Graphs and Metrics

• Test summary report

• Test incident report

• Test closure report

• Release Note

• Installation/configuration guide

• User guide

• Test status report

• Weekly status report (Project manager to client)

• Click here for more details.

• What are the most common components of a defect report?

The most common components of a defect report format include the following

• Project Name

• Module Name

• Defect ID

• Defect detected on

• Defect detected by

• Priority

• Severity

• Defect resolved on

• Defect resolved by

• What are the levels of testing?

In software testing, there are four testing levels.

• Unit Testing

• Integration Testing

• System Testing

• Acceptance Testing

• What is Unit Testing?

Unit Testing is also called Module Testing or Component Testing. It is done to check

whether the individual unit or module of the source code is working properly. It is

done by the developers in the developer’s environment. Learn more about Unit Testing

in detail.

• What is Integration Testing?

Integration Testing is the process of testing the interface between the two software

units. Integration testing is done in three ways. Big Bang Approach, Top-Down

Approach, Bottom-Up Approach. Learn more about Integration Testing in detail.

• What is System Testing?

Testing the fully integrated application to evaluate the system’s compliance with its

specified requirements is called System Testing AKA End to End testing. Verifying

the completed system to ensure that the application works as intended or not.

• What is Big Bang Approach?

Combining all the modules once and verifying the functionality after completion of

individual module testing. Top-down and bottom-up are carried out by using dummy

modules known as Stubs and Drivers. These Stubs and Drivers are used to stand in for

missing components to simulate data communication between modules.

• What is Top-Down Approach?

Testing takes place from top to bottom. High-level modules are tested first and then

low-level modules and finally integrating the low-level modules to a high level to

ensure the system is working as intended. Stubs are used as a temporary module if a

module is not ready for integration testing.

• What is Bottom-Up Approach?

It is a reciprocate of the Top-Down Approach. Testing takes place from bottom to up.

Lowest level modules are tested first and then high-level modules and finally

integrating the high-level modules to a low level to ensure the system is working as

intended. Drivers are used as a temporary module for integration testing.

• What is End-To-End Testing?

In simple words, end-to-end testing is the process of testing software from start to end.

Check this End-To-End Testing guide for more information. Also, refer System Testing

tutorial.

• What is Functional Testing?

In simple words, what the system actually does is functional testing. To verify that

each function of the software application behaves as specified in the requirement

document. Testing all the functionalities by providing appropriate input to verify

whether the actual output is matching the expected output or not. It falls within the

scope of black box testing and the testers need not concern about the source code of the

application.

• What is Non-Functional Testing?

In simple words, how well the system performs is non-functionality testing. Non-

functional testing refers to various aspects of the software such as performance, load,

stress, scalability, security, compatibility etc., Main focus is to improve the user

experience on how fast the system responds to a request.

• What is Acceptance Testing?

It is also known as pre-production testing. This is done by the end-users along with the

testers to validate the functionality of the application. After successful acceptance

testing. Formal testing conducted to determine whether an application is developed as

per the requirement. It allows the customer to accept or reject the application. Types of

acceptance testing are Alpha, Beta & Gamma.

• On what basis is the acceptance plan prepared?

The acceptance test plan is prepared using the following inputs.

• Requirement Document: The requirement document specifies what exactly is

needed and not needed in the existing project from the customer’s perspective.

• Input from customer: Input from the customer will be in the format of

formal emails, informal talks, discussions, etc.,

• Project plan: Project plan document prepared by the project manager.

• All the above three inputs act as good inputs to prepare the acceptance test plan.

• What is Alpha Testing?

Alpha testing is done by the in-house developers (who developed the software) and

testers before we ship the software to the customers. Sometimes alpha testing is done

by the client or outsourcing team with the presence of developers or testers. It is a part

of User Acceptance Testing. The purpose of doing this is to find bugs before the

customers start using the software.

• What is Beta Testing?

Beta testing is done by a limited number of end-users before delivery. It is done after

the Alpha Testing. Usually, it is done in the client’s place. Learn more about Beta

Testing here.

• What is Gamma Testing?

Gamma testing is done when the software is ready for release with specified

requirements. It is done at the client place. It is done directly by skipping all the in-

house testing activities.

• What is Smoke Testing?

Smoke Testing is done to make sure if the build we received from the development

team is testable or not. It is also called as “Day 0” check. It is done at the “build level”.

It helps not to waste the testing time to simply testing the whole application when the

key features don’t work or the key bugs have not been fixed yet.

• What is Sanity Testing?

Sanity Testing is done during the release phase to check for the main functionalities of

the application without going deeper. It is also called as a subset of Regression testing.

It is done at the “release level”. At times due to release time constraints rigorous

regression testing can’t be done to the build, sanity testing does that part by checking

main functionalities.

• What is Retesting?

To ensure that the defects which were found and posted in the earlier build were fixed

or not in the current build. Say, Build 1.0 was released. Test team found some defects

(Defect Id 1.0.1, 1.0.2) and posted. Build 1.1 was released, now testing the defects

1.0.1 and 1.0.2 in this build is retesting.

• What is Regression Testing?

Repeated testing of an already tested program, after modification, to discover any

defects introduced or uncovered as a result of the changes in the software being tested

or in another related or unrelated software components.

Usually, we do regression testing in the following cases:

• New functionalities are added to the application

• Change Requirement (In organizations, we call it as CR)

• Defect Fixing

• Performance Issue Fix

• Environment change (E.g., Updating the DB from MySQL to Oracle)

• Read a detailed guide on Regression Testing

• What do you mean by regression and confirmation testing?

Regression Testing: Testing team re-execute the tests against the modified application

to make sure whether the modified code breaks anything which was working earlier.

Confirmation Testing: Usually testers report a bug when a test fails. Dev Team releases

a new version of the software after the defect is fixed. Now the testing team will retest

to make sure the reported bug is actually fixed or not.

• What is Bug Life Cycle?

Bug life cycle is also known as Defect life cycle. In Software Development process,

the bug has a life cycle. The bug should go through the life cycle to be closed. Bug life

cycle varies depends upon the tools (QC, JIRA etc.,) used and the process followed in

the organization. Click here for more details.

• What is Bug Leakage?

A bug which is actually missed by the testing team while testing and the build was

released to the Production. If now that bug (which was missed by the testing team) was

found by the end user or customer, then we call it as Bug Leakage.

• What is Bug Release?

Releasing the software to the Production with the known bugs then we call it as Bug

Release. These known bugs should be included in the release note.

• What is Defect Age?

Defect age can be defined as the time interval between date of defect detection and date of

defect closure.

Defect Age = Date of defect closure – Date of defect detection

Assume, a tester found a bug and reported it on 1 Jan 2016 and it was successfully

fixed on 5 Jan 2016. So the defect age is 5 days.

• What is GUI Testing?

Graphical User Interface Testing is to test the interface between the application and the end

user.

• What is Recovery Testing?

Recovery testing is performed in order to determine how quickly the system can

recover after the system crash or hardware failure. It comes under the type of non-

functional testing.

• What is Globalization Testing?

Globalization is a process of designing a software application so that it can be adapted

to various languages and regions without any changes.

• What is Random testing?

In random testing is a form of black-box software testing technique where the

application is testing by generating random data.

• What is Localization Testing (L10N Testing)?

Localization is a process of adapting globalization software for a specific region or

language by adding local specific components.

• What is Installation Testing?

It is to check whether the application is successfully installed and it is working as expected after

installation.

• What is Formal Testing?

It is a process where the testers test the application by having pre-planned

procedures and proper documentation.

• What is Risk Based Testing?

Identify the modules or functionalities which are most likely cause failures and

then testing those functionalities.

• What is Compatibility Testing?

It is to deploy and check whether the application is working as expected in a different

combination of environmental components.

• What is Exploratory Testing?

Usually, this process will be carried out by domain experts. They perform testing just

by exploring the functionalities of the application without having the knowledge of the

requirements. Check our detailed guide on Exploratory Testing and also don’t miss

these popular Exploratory Testing Tools.

• What is Monkey Testing?

Perform abnormal action on the application deliberately in order to verify the stability

of the application. Check our in-depth guide on Monkey Testing.

• What is Usability Testing?

To verify whether the application is user-friendly or not and was comfortably used by

an end-user or not. The main focus in this testing is to check whether the end-user can

understand and operate the application easily or not. An application should be self-

exploratory and must not require training to operate it. Check this guide to learn how to

perform Usability Testing.

• What is Security Testing?

Security testing is a process to determine whether the system protects data and

maintains functionality as intended.

• What is Soak Testing?

Running a system at high load for a prolonged period of time to identify the

performance problems is called Soak Testing.

• What is Endurance Testing?

Endurance testing is a non-functional testing type. It is also known as Soak Testing. Refer Soak

testing.

• What is Performance Testing?

This type of testing determines or validates the speed, scalability, and/or stability

characteristics of the system or application under test. Performance is concerned with

achieving response times, throughput, and resource- utilization levels that meet the

performance objectives for the project or product.

• What is Load Testing?

It is to verify that the system/application can handle the expected number of

transactions and to verify the system/application behaviour under both normal and

peak load conditions.

• What is Volume Testing?

It is to verify that the system/application can handle a large amount of data

• What is Stress Testing?

It is to verify the behaviour of the system once the load increases more than its design

expectations.

• What is Scalability Testing?

Scalability testing is a type of non-functional testing. It is to determine how the

application under test scales with increasing workload.

• What is Concurrency Testing?

Concurrency testing means accessing the application at the same time by multiple

users to ensure the stability of the system. This is mainly used to identify deadlock

issues.

• What is Fuzz Testing?

Fuzz testing is used to identify coding errors and security loopholes in an application.

By inputting a massive amount of random data to the system in an attempt to make it

crash to identify if anything breaks in the application.

• What is Adhoc Testing?

Ad-hoc testing is quite opposite to the formal testing. It is an informal testing type. In

Adhoc testing, testers randomly test the application without following any documents

and test design techniques. This testing is primarily performed if the knowledge of

testers in the application under test is very high. Testers randomly test the application

without any test cases or any business requirement document.

• What is Interface Testing?

Interface testing is performed to evaluate whether two intended modules pass data and

communicate correctly to one another.

• What is Reliability Testing?

Perform testing on the application continuously for long period of time in order to

verify the stability of the application

• What is Bucket Testing?

Bucket testing is a method to compare two versions of an application against each

other to determine which one performs better.

• What is STLC?

STLC (Software Testing Life Cycle) identifies what test activities to carry out and

when to accomplish those test activities. Even though testing differs between

Organizations, there is a testing life cycle. Click here for more details.

• What is RTM?

Requirements Traceability Matrix (RTM) is used to trace the requirements to the tests

that are needed to verify whether the requirements are fulfilled. Requirement

Traceability Matrix AKA Traceability Matrix or Cross Reference Matrix. Click here

for more details.

• What are the principles of Software Testing?

• Testing shows presence of defects

• Exhaustive testing is impossible

• Early testing

• Defect clustering

• Pesticide Paradox

• Testing is context depending

• Absence of error fallacy

• Click here for more details.

• What is Exhaustive Testing?

Testing all the functionalities using all valid and invalid inputs and preconditions is

known as Exhaustive testing.

• What is Early Testing?

Defects detected in early phases of SDLC are less expensive to fix. So conducting

early testing reduces the cost of fixing defects.

• What is Defect clustering?

Defect clustering in software testing means that a small module or functionality

contains most of the bugs or it has the most operational failures.

• What is Pesticide Paradox?

Pesticide Paradox in software testing is the process of repeating the same test cases,

again and again, eventually, the same test cases will no longer find new bugs. So to

overcome this Pesticide Paradox, it is necessary to review the test cases regularly and

add or update them to find more defects.

• What is Defect Cascading in Software Testing?

Defect cascading in Software testing means triggering of other defects in an

application. When a defect is not identified or goes unnoticed while testing, it invokes

other defects. It leads to multiple defects in the later stages and results in an increase

in a number of defects in the application.

For example, if there is a defect in an accounting system related to negative taxation

then the negative taxation defect affects the ledger which in turn affects other reports

such as Balance Sheet, Profit & Loss etc.,

• What is Walk Through?

A walkthrough is an informal meeting conducts to learn, gain understanding, and find

defects. The author leads the meeting and clarifies the queries raised by the peers in the

meeting.

• What is HotFix?

A bug that needs to handle as a high priority bug and fix it immediately.

• What is Inspection?

Inspection is a formal meeting lead by a trained moderator, certainly not by the author.

The document under inspection is prepared and checked thoroughly by the reviewers

before the meeting. In the inspection meeting, the defects found are logged and shared

with the author for appropriate actions. Post inspection, a formal follow-up process is

used to ensure a timely and corrective action.

• Who are all involved in an inspection meeting?

Author, Moderator, Reviewer(s), Scribe/Recorder and Manager.

• What is a Defect?

The variation between the actual results and expected results is known as a defect. If a

developer finds an issue and corrects it by himself in the development phase, then it’s

called a defect. Click here for more details.

• What is a Bug?

If testers find any mismatch in the application/system in testing phase, then they call it

as Bug. Click here for more details.

• What is an Error?

We can’t compile or run a program due to a coding mistake in a program. If a developer

unable to successfully compile or run a program, then they call it as an error. Click here

for more details.

• What is a Failure?

Once the product is deployed and customers find any issues then they call the product

as a failure product. After release, if an end user finds an issue then that particular

issue is called as a failure. Click here for more details.

• What is Bug Severity?

Bug/Defect severity can be defined as the impact of the bug on customer’s business. It

can be Critical, Major or Minor. In simple words, how much effect will be there on the

system because of a particular defect. Click here for more details.

• What is Bug Priority?

Defect priority can be defined as how soon the defect should be fixed. It gives the

order in which a defect should be resolved. Developers decide which defect they

should take up next based on the priority. It can be High, Medium or Low. Most of the

times the priority status is set based on the customer requirement. Click here for more

details.

• Tell some examples of Bug Severity and Bug Priority?

High Priority & High Severity: Submit button is not working on a login page and

customers are unable to login to the application

Low Priority & High Severity: Crash in some functionality which is going to deliver after

couple of releases

High Priority & Low Severity: Spelling mistake of a company name on the homepage

Low Priority & Low Severity: FAQ page takes a long time to load

• What is a Critical Bug?

A critical bug is a show stopper which means a large piece of functionality or

major system component is completely broken and there is no workaround to

move further.

For example, due to a bug in one module, we cannot test the other modules

because that blocker bug has blocked other modules. Bugs which affects the

customers’ business are considered as critical.

Example:

• “Sign In” button is not working on Gmail App and Gmail users are blocked to login to their

accounts.

• An error message pops up when a customer clicks on transfer money button in a Banking

website.

• What is the difference between a Standalone application, Client-Server

application and Web application?

• Standalone application:Standalone applications follow one-tier architecture.

Presentation, Business, and Database layer are in one system for a single user.

• Client-Server Application:Client-server applications follow two-tier

architecture. Presentation and Business layer are in a client system and Database

layer on another server. It works majorly in Intranet.

• Web Application:Web server applications follow three-tier or n-tier

architecture. The presentation layer is in a client system, a Business layer is in an

application server and Database layer is in a Database server. It works both in

Intranet and Internet.

• What is State Transition?

Using state transition testing, we pick test cases from an application where we need to

test different system transitions. We can apply this when an application gives a

different output for the same input, depending on what has happened in the earlier

state. Click here for more details.

• What is entry criteria?

The prerequisites that must be achieved before commencing the testing process. Click here for

more details.

• What is exit criteria?

The conditions that must be met before testing should be concluded. Click here for more

details.

• What is SDLC?

Software Development Life Cycle (SDLC) aims to produce a high-quality system that

meets or exceeds customer expectations, works effectively and efficiently in the

current and planned information technology infrastructure, and is inexpensive to

maintain and cost-effective to enhance.

• What is Error Seeding?

Error seeding is a process of adding known errors intendedly in a program to identify

the rate of error detection. It helps in the process of estimating the tester skills of

finding bugs and also to know the ability of the application (how well the application is

working when it has errors.)

• What is Error Guessing?

Error guessing is also a method of test case design similar to error seeding. In error

guessing, testers design test cases by guessing the possible errors that might occur in

the software application. The intention is to catch the errors immediately.

• What is Showstopper Defect?

A showstopper defect is a defect which won’t allow a user to move further in the

application. It’s almost like a crash.

Assume that login button is not working. Even though you have a valid username and

valid password, you could not move further because the login button is not functioning.

• Can you do System testing at any stage of SDLC?

We can do System Testing only when all the units are in place and working properly.

It can only be done before User Acceptance Testing (UAT).

• What are the different strategies for rollout to end-users?

There are four strategies to be followed for the rollout of any software testing project are as

follows:

• Pilot

• Gradual Implementation

• Phased Implementation

• Parallel Implementation

• What is Boundary Value Analysis?

Boundary value analysis (BVA) is based on testing the boundary values of valid and

invalid partitions. The Behaviour at the edge of each equivalence partition is more

likely to be incorrect than the behavior within the partition, so boundaries are an area

where testing is likely to yield defects. Every partition has its maximum and minimum

values and these maximum and minimum values are the boundary values of a partition.

A boundary value for a valid partition is a valid boundary value. Similarly, a boundary

value for an invalid partition is an invalid boundary value. Click here for more details.

• What is Equivalence Class Partition?

Equivalence Partitioning is also known as Equivalence Class Partitioning. In

equivalence partitioning, inputs to the software or system are divided into groups that

are expected to exhibit similar behavior, so they are likely to be proposed in the same

way. Hence selecting one input from each group to design the test cases. Click here for

more details.

• What is Decision Table testing?

Decision Table is aka Cause-Effect Table. This test technique is appropriate for

functionalities which has logical relationships between inputs (if-else logic). In the

Decision table technique, we deal with combinations of inputs. To identify the test

cases with a decision table, we consider conditions and actions. We take conditions as

inputs and actions as outputs. Click here for more details.

• What are the different available models of SDLC?

• Waterfall

• Spiral

• V Model

• Prototype

• Agile

• What is the procedure of manual testing?

Manual testing is crucial for testing software applications more thoroughly. The procedure of

manual testing comprises of the following.

• Planning and Control

• Analysis and Design

• Implementation and Execution

• Evaluating and Reporting

• Test Closure activities

• What is Test Metrics?

Software test metrics is to monitor and control process and product. It helps to drive

the project towards our planned goals without deviation. Metrics answer different

questions. It’s important to decide what questions you want answers to. Click here for

more details.

• What is API Testing?

API testing is a type of software testing that involves testing APIs directly and also as a

part of integration testing to check whether the API meets expectations in terms of

functionality, reliability, performance, and security of an application. In API Testing

our main focus will be on a Business logic layer of the software architecture. API

testing can be performed on any software system which contains multiple APIs. API

testing won’t concentrate on the look and feel of the application. API testing is entirely

different from GUI Testing.

• Which test cases are written first white boxes or black box?

The simple answer is black-box test cases are written first.

Let’s see why black-box test cases are written first compared to white box test cases.

Prerequisites to start writing black-box test cases are Requirement documents or design

documents. These documents will be available before initiating a project.

Prerequisites to start writing white box test cases are the internal architecture of the

application. The internal architecture of the application will be available in the later part of the

project i.e., designing.

